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Semisimplicial Unital Groups

David J. Foulis1 and Richard J. Greechie2

If there is an order-preserving group isomorphism from a directed abelian group G
with a finitely generated positive cone G+ onto a simplicial group, then G is called a
semisimplicial group. By factoring out the torsion subgroup of a unital group having
a finite unit interval, one obtains a semisimplicial unital group. We exhibit a represen-
tation for the base-normed space associated with a semisimplicial unital group G as
the Banach dual space of a finite dimensional order-unit space that contains G as an
additive subgroup. In terms of this representation, we formulate necessary and sufficient
conditions for G to be archimedean.

KEY WORDS: partially ordered abelian group; directed group; unital group; sim-
plicial group; semisimplicial unital group; effect algebra; state; base-normed space,
order-unit space.

1. INTRODUCTION

If H is a Hilbert space, then the set G of all bounded self-adjoint operators on
H is organized in the usual way into a partially ordered real linear space (in fact, an
order-unit Banach space), and the operators belonging to the interval E := {A ∈
G | 0 ≤ A ≤ 1} are called the effect operators on H. The set E, organized into a
partial algebra under the restriction ⊕ of addition on G to E, is called the algebra
of effect operators on H. In the contemporary theory of quantum measurement
(Busch et al., 1991), an observable is represented by a positive-operator-valued
(POV) measure defined on a σ -field of sets and taking on values in the effect
algebra E.

Abstraction of the salient features of the Hilbert-space effect algebra E

has led to the definition and study of more general effect algebras (Foulis and
Bennett, 1994), especially effect algebras that, like E, arise as intervals in par-
tially ordered linear spaces (Gudder et al., 1999), or more generally, in par-
tially ordered abelian groups (Bennett and Foulis, 1997). The Hilbert-space effect
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algebra E harbors many mysteries, and some aspects of the POV theory of quan-
tum measurement are resistant to satisfactory phenomenological interpretation.
The development in (Foulis and Gudder, 2001) suggests that a study of simpler
effect algebras, for instance, finite effect algebras, might cast some light on these
matters.

Thus, in this paper, we shall be studying intervals in the positive cones of
partially ordered abelian groups, paying special attention to the case in which the
intervals are finite. Suppose H is a partially ordered abelian group with positive
cone H+, u ∈ H+, and E is the interval E = {e ∈ H | 0 ≤ e ≤ u}. As our primary
concern is with the structure of the interval E , nothing is lost if we drop down to
the subcone C of H+ generated by E and then to the subgroup G := C − C of H .
Then G can be organized into a partially ordered abelian group with positive cone
G+ := C , and we have E = {e ∈ G | 0 ≤ e ≤ u}. Therefore, the passage from H
to G does not affect the structure of E as an effect algebra, but now E generates
G+ as a cone, and G+ generates G as a group. We refer to such a G as a unital
group with unit u and unit interval E .

Suppose G is a unital group with a finite unit interval E . Then G is finitely
generated, its torsion subgroup Gτ is a direct summand, and the quotient group
G/Gτ is a free abelian group of finite rank. The natural group epimorphism
η: G → G/Gτ can be used to transfer the partial order on G to a partial order
on G/Gτ , whence G/Gτ has the structure of a torsion-free unital group with
η(E) as its (obviously finite) unit interval. It turns out that a torsion-free unital
group with a finite unit interval is a semisimplicial unital group, i.e., it admits an
order-preserving group isomorphism onto a simplicial group. Conversely, every
semisimplicial unital group is torsion free and has a finite unit interval. Thus,
in what follows, semisimplicial unital groups will be the primary objects of our
study.

2. REVIEW OF BASIC CONCEPTS

The abelian groups that we consider will be written using additive notation.
The positive cone in a partially ordered abelian group G is denoted by G+ := {g ∈
G | 0 ≤ g}. If G = G+ − G+, then G is said to be directed. If A ⊆ G+ and every
element in G+ is a finite linear combination with nonnegative integer coefficients
of elements of A, then we say that A generates G+. The positive cone G+ is said to
be finitely generated iff it is generated by a finite set A ⊆ G+. An element u ∈ G+

is called an order unit iff, for each element g ∈ G, there exists a positive integer
n such that g ≤ nu. If there exists an order unit u in G, then G is directed. If
H is a subgroup of G, then H forms a partially ordered abelian group under the
induced partial order obtained by restriction of the partial order on G to H , and
the corresponding induced positive cone is H+ = H ∩ G+.
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As an additive group, and totally ordered in the usual way, the system R of
real numbers forms a directed abelian group with the standard positive cone R+ =
{x2 | x ∈ R}. The systems Q and Z of rational numbers and integers, respectively,
form directed additive subgroups of R with the induced total orders and with the
standard positive cones Q+ = Q ∩ R+ and Z+ = Z ∩ R+. In each of the additive
abelian groups R, Q, and Z with the standard total order, every strictly positive
element is an order unit. Only Z has a finitely generated positive cone.

A partially ordered abelian group G is lattice ordered iff, as a partially ordered
set, it forms a lattice (i.e., any two elements a, b ∈ G have an infimum a ∧ b and
a supremum a ∨ b). An interpolation group is a partially ordered abelian group
G such that, for a, b, c, d ∈ G with a, b ≤ c, d (i.e., a ≤ b, a ≤ d, b ≤ c, and
b ≤ d), there exists t ∈ G with a, b ≤ t ≤ c, d (Goodearl, 1986, Chapter 2). If G
is lattice ordered, it is an interpolation group.

The partially ordered abelian group G is said to be archimedean iff, for
all a, b ∈ G, the condition that na ≤ b for all positive integers n implies that
−a ∈ G+. If, for all a ∈ G, the existence of a positive integer n such that na ∈ G+

implies that a ∈ G+, then G is said to be unperforated. If G is archimedean and
directed, then it is unperforated (Goodearl, 1986, Proposition 1.24). Also, if G is
lattice ordered, it is unperforated (Goodearl, 1986, Proposition 1.22), and if G is
unperforated, then it is obviously torsion free (i.e., there are no nonzero elements
of finite order in G).

If G and H are partially ordered abelian groups, a group homomorphism
φ: G → H is order preserving (i.e., g1 ≤ g2 ⇒ φ(g1) ≤ φ(g2) for all g1, g2 ∈ G)
iff φ(G+) ⊆ H+. If there is a group isomorphism φ: G → H of G onto H such
that both φ and φ−1 are order preserving (i.e., φ(G+) = H+), then G and H are
isomorphic as partially ordered abelian groups.

Under coordinatewise partial order, the cartesian product of partially ordered
abelian groups is again a partially ordered abelian group. In particular, if r is
a positive real number, the r -fold cartesian product Zr = Z × Z × · · · × Z with
coordinatewise partial order is a lattice-ordered abelian group with the standard
positive cone (Z+)r = Z+ × Z+ × · · · × Z+. If G is isomorphic as a partially
ordered abelian group to Zr with the standard positive cone (Z+)r , then G is called
a simplicial group (Goodearl, 1986, p. 47). By (Goodearl, 1986, Corollary 3.14), G
is simplicial iff it is an interpolation group with an order unit and the positive cone
G+ satisfies the descending chain condition (i.e, there does not exist an infinite
strictly descending chain in G+.)

3. UNITAL GROUPS AND UNIGROUPS

Let G be a partially ordered abelian group and let u ∈ G+. We define the inter-
val G+[0, u] := {g ∈ G | 0 ≤ g ≤ u} and regard G+[0, u] as a bounded partially
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ordered set under the restriction of the partial order on G. The interval G+[0, u]
carries the natural order-reversing involution e �→ u − e for e ∈ G+[0, u]. If G+

[0, u] generates G+, then u is said to be generative. If G is directed, then every
generative element in G+ is an order unit. However, as the following example
shows, order units in G+ need not be generative.

Example 1. Let G = Z × Z as an abelian group. The strict partial order � on G is
defined by (a, b) � (c, d) iff a = c, b = d or a < c, b < d . With the strict partial
order, G is a directed unperforated abelian group, and every nonzero element in
the positive cone G+ is an order unit. Also, G+, being a subcone of Z+ × Z+,
satisfies the descending chain condition. However, no element in G+ is generative,
G+ is not finitely generated, and G is not archimedean.

A unital group is a partially ordered abelian group G with a specified genera-
tive order unit u, called the unit of G (Foulis, 2003, Definition 2.3 (ii)). Evidently,
every unital group is directed. If G is a unital group with unit u, then G+[0, u] is
called the unit interval in G. If E is the unit interval in the unital group G, then E
generates G+ and G = G+ − G+, so E is a set of generators for G as an abelian
group.

Example 2. Suppose U is a partially ordered linear space over R and u is an order
unit in U (Alfsen, 1971, p. 68). Then, neglecting multiplication of vectors in U
by non-integer scalars, we can regard U as a partially ordered abelian group. As
such, U is a unital group with unit u. (See Cook and Foulis (2004), Lemma 3.4).

Let G be a unital group with unit u and unit interval E = G+[0, u]. If K
is an abelian group, then a mapping φ: E → K is called a K -valued measure on
(or for) E iff, whenever e, f, e + f ∈ E , we have φ(e + f ) = φ(e) + φ( f ). If
�: G → K is a group homomorphism, then the restriction φ := �|E of � to E
is a K -valued measure on E . Owing to the fact that E is a set of generators for
the group G, a group homomorphism �: G → K is uniquely determined by the
K -valued measure φ = �|E . If every K -valued measure on E can be extended to
a (necessarily unique) group homomorphism �: G → K , then G is called a K -
unital group. If G is a K -unital group for every abelian group K , then G is called
a unigroup (Foulis et al., 1998). If H is a partially ordered abelian group, then
an H -valued measure φ on E is called an H+-valued measure iff φ(E) ⊆ H+.
If every H+-valued measure on E can be extended to a group homomorphism
�: G → H , then G is called an H+-unital group. Evidently, G is a unigroup ⇒ G
is H -unital ⇒ G is H+-unital.

Let G and H be unital groups with units u and v and unit intervals E and
L , respectively. An order-preserving group homomorphism �: G → H such that
�(u) = v is called a unital morphism. A bijective unital morphism � from G onto
H such that �−1: H → G is also a unital morphism is called a unital isomorphism.
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A mapping ψ : E → L is called an effect-algebra morphism iff ψ(u) = v and,
regarded as a mapping ψ : E → H , it is an H -valued measure. If �: G → H is
a unital morphism, then the restriction ψ := �|E of � to E is an effect-algebra
morphism. A bijective effect-algebra morphism ψ : E → L such that ψ−1: L → E
is also an effect-algebra morphism is called an effect-algebra isomorphism of E
onto L .

Suppose G is a unital group with unit interval E . Then there is a unigroup
G with unit interval E and there is a surjective unital morphism ξ :G → G such
that the restriction ξ |E is an effect-algebra isomorphism of E onto E (Bennett
and Foulis, 1997, Corollary 4.2). Thus, unigroups are universal unital groups
in the sense that every unital group is the image of a unigroup under a surjec-
tive unital morphism that restricts to an effect-algebra isomorphism on the unit
interval.

Every unital interpolation group is a unigroup, so every lattice-ordered unital
group is a unigroup. Every unital group that is obtained from a partially ordered
linear space with an order unit as in Example 2 is a unigroup. In particular, the order-
unit normed linear space G of bounded self-adjoint operators on a Hilbert space
H, regarded as an additive unital group, is an archimedean unigroup. However,
unless H is one-dimensional, G does not form an interpolation group.

If G is a simplicial group, there is a uniquely determined smallest order unit
u in G, the order units in G are precisely the elements v ∈ G with u ≤ v , and
with any such v as unit, G forms a unigroup. More generally, if the unit u in
an interpolation unigroup G is a minimal order unit, then G is called a Boolean
unigroup. If E is the unit interval in a Boolean unigroup with unit u, then E forms
a Boolean algebra (a bounded, complemented, distributive lattice) in such a way
that, for e ∈ E , u − e is the Boolean complement of e. Conversely, every Boolean
algebra B is isomorphic (as a Boolean algebra) to the unit interval in a Boolean
unigroup that is uniquely determined up to a unital isomorphism.

The additive group R of real numbers with the standard (total) order forms a
unigroup with 1 as a unit and with the standard unit interval R+[0, 1] as its unit
interval. If G is a unital group, then a unital morphism ω: G → R is called a state
on (or for) G (Alfsen, 1971, p. 72), (Goodearl, 1986, Chapter 4). We denote by
�(G) the set of all states on G. If the only element g ∈ G such that ω(g) = 0 for
all ω ∈ �(G) is g = 0, then �(G) separates the points in G, i.e., if g, h ∈ G and
g �= h, there exists ω ∈ �(G) with ω(g) �= ω(h). If Gτ is the torsion subgroup
of G, then ω(q) = 0 for all ω ∈ �(G) and all q ∈ Gτ . Consequently, if �(G)
separates the points of G, then G is torsion free.

Let G be a unital group with unit interval E . A probability measure on (or
for) E is an effect-algebra morphism µ: E → R+[0, 1]. If ω ∈ �(G), then the
restriction ω|E of the state ω to E is a probability measure on E . If G is R+-unital,
then there is a bijective correspondence ω ↔ µ between states ω ∈ �(G) and
probability measures µ on E given by µ = ω|E . The probability measures on the
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unit interval E of a Boolean unigroup G are just the finitely additive probability
measures (in the usual sense) on the Boolean algebra E .

4. THE BASE-NORMED BANACH SPACE V(G)

The notions sketched in this section are developed in more detail in (Cook and
Foulis (2004)). Let G be a unital group with unit u and unit interval E . The set RG of
all functions ν: G → R forms a locally convex Hausdorff linear topological space
over R with pointwise operations and with the topology of pointwise convergence.
Denote by hom(G, R) the closed linear subspace of RG consisting of the additive
group homomorphisms ν: G → R and let hom(G, R)+ be the subset of hom(G, R)
consisting of the order-preserving group homomorphisms. Then hom(G, R) forms
a partially ordered linear space over R with the partial order relation ≤+ defined
for ν1, ν2 ∈ hom(G, R) by ν1 ≤+ ν2 iff ν2 − ν1 ∈ hom(G, R)+.

In general, the partially ordered linear space hom(G, R) will not be di-
rected, e.g., hom(R, R) is not directed because of the existence of discontinu-
ous additive group homomorphisms ν: R → R. But the linear subspace V (G) :=
hom(G, R)+ − hom(G, R)+ is a directed linear space over R with positive cone
V (G)+ = hom(G, R)+ under the restriction of the partial order ≤+. If G has a fi-
nite unit interval E , then V (G) = hom(G, R) (Cook and Foulis (2004), Lemma 5.2
(ii)). If G is a unital interpolation group, then V (G) is a Dedekind complete lattice-
ordered linear space (Goodearl, 1986, Corollary 2.28).

The set �(G) of all states ω: G → R is a nonempty convex and compact
subset of the linear topological space RG (Goodearl, 1986, Corollary 4.4 and
Proposition 6.2). Furthermore, �(G) is a cone base for the positive cone V (G)+

and, with �(G) as cone base, V (G) forms a base-normed Banach space (Cook
and Foulis (2004), Theorem 4.1). The Banach dual space V (G)∗ of V (G) is an
order-unit Banach space with order unit e1 ∈ V (G)∗+ uniquely determined by the
condition that e1(ω) = 1 for all ω ∈ �(G) (Alfsen, 1971, Theorem II.1.15).

Regarding the order-unit Banach space V (G)∗ as a unital group as in
Example 2, we find that there is a unital morphism g �→ ĝ from G into V (G)∗

such that, for all ν ∈ V (G) and all g ∈ G, ĝ(ν) = ν(g) (Cook and Foulis (2004),
Theorem 4.3 (i)). The kernel of g �→ ĝ is {g ∈ G | ω(g) = 0, ∀ω ∈ �(G)}. If G
has a finite unit interval, then the kernel of g �→ ĝ is the torsion subgroup Gτ of
the abelian group G (Cook and Foulis (2004), Theorem 5.3).

We define Ĝ := {̂g | g ∈ G} to be the image of G under the unital morphism
g �→ ĝ. Then by (Cook and Foulis (2004), Theorem 4.3 (ii)), Ĝ can be organized
into a unital group with positive cone Ĝ+ := {̂g | g ∈ G+}, with unit û, and with
Ê := {̂g | g ∈ G+ and û − ĝ ∈ Ĝ+} as its unit interval. There is an isomorphism
of base-normed spaces ν �→ ν̂ from V (G) onto V (Ĝ) such that, for all g ∈ G,
ν̂ (̂g) = ν(g) (Cook and Foulis (2004), Theorem 4.3). Thus, in the passage from G
to Ĝ, the associated base-normed and order-unit Banach spaces remain essentially
the same.
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If there are enough states in �(G) to separate the points in G, then g �→ ĝ is
a unital isomorphism of G onto Ĝ. In the contrary case, the passage from G to Ĝ
is often advantageous because there are always enough states in �(Ĝ) to separate
the points in Ĝ, whence Ĝ is torsion free. Also, if the unit interval in G is finite,
so is the unit interval in Ĝ. Thus, in what follows, we shall be especially interested
in torsion free unital groups with finite unit intervals.

5. SEMISIMPLICIAL UNITAL GROUPS

Definition 1. A semisimplicial group is a directed partially ordered abelian group
G with a finitely generated positive cone G+ such that there exists an order-
preserving group isomorphism from G onto a simplicial group.

We note that the existence of an order-preserving group isomorphism from
a directed partially ordered abelian group G onto a simplicial group does not, in
itself, imply that the positive cone G+ is finitely generated (see Example 1).

Lemma 1. Suppose G �= {0} is a semisimplicial group. Then:

(i) G is a torsion-free abelian group with finite positive rank.
(ii) If u ∈ G+, then the interval G+[0, u] is finite.

(iii) There are generative order units in G+.
(iv) The positive cone G+ satisfies the descending chain condition.
(v) If G is a unital group with unit u, then �(G) separates the points in G.

Proof: By hypothesis there is a nonzero simplicial group Z and an order-
preserving group isomorphism θ : G → Z . (i) Z is torsion free and has finite pos-
itive rank, so G inherits these properties. Parts (ii) and (iii) follow from (Foulis,
2003, Theorem 2.1). (iv) Let g1, g2 ∈ G with g1 > g2. Then θ (g1) ≥ θ (g2), but
since θ is injective and g1 �= g2, it follows that θ (g1) �= θ (g2), i.e., θ (g1) > θ (g2).
Thus, the fact that there are no strictly decreasing infinite chains in Z+ implies
that there are no strictly decreasing infinite chains in G+. Part (v) follows from
(Foulis, 2003, Lemma 3.2). �

Corollary 1. A semisimplicial group is simplicial iff it is an interpolation group.

Proof: Combine parts (iii) and (iv) of Lemma 1 with (Goodearl, 1986,
Corollary 3.14). �

Example 3. A semisimplicial group need not be unperforated. For instance,
let G = Z as an abelian group, but with the nonstandard positive cone G+ :=
{0, 2, 3, 4, . . .} obtained by removing 1 from the standard positive cone Z+. Then
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G is directed and {2, 3} is a finite set of generators for G+, but with g := 1 we
have 2g ∈ G+, g /∈ G+.

Theorem 1. Let G �= {0} be a unital group with unit interval E. Then the fol-
lowing conditions are mutually equivalent:

(i) G is semisimplicial.
(ii) G is torsion free and E is finite.

(iii) There is a positive integer r and a group isomorphism θ : G → Zr such
that θ (G+) ⊆ (Z+)r .

Proof: That (i) ⇒ (ii) follows from Lemma 1 and that (ii) ⇒ (iii) follows from
(Foulis, 2003, Lemma 3.3). Assume (iii). Since Zr is a simplicial group with
positive cone (Z+)r , we only have to prove that G+ is finitely generated. If u is
the unit in G, then the interval L := (Z+)r [0, θ (u)] is finite, θ (E) ⊆ L , and θ is
injective, whence E is finite. But E generates G+, so G+ is finitely generated. �

In Theorem 1 (iii), the positive integer r is uniquely determined; it is the rank
of the abelian group G. However, the group isomorphism θ is determined only
up to composition with an order-preserving group automorphism of the simplicial
group Zr . The question of how one chooses an “optimal” θ is of considerable
interest, but we shall not pursue it here.

In our subsequent study of a semisimplicial unital group G, it will be con-
venient to choose θ as in part (iii) of Theorem 1 and use it to identify G with the
abelian group Zr in such a way that G+ ⊆ (Z+)r . This provides a definite com-
putational advantage in that elements of G are vectors g = (g1, g2, . . . , gr ) with
integer components, elements of G+ have nonnegative integer components, and
addition is performed coordinate-wise. Thus, in the sequel, we shall be working
with the following data.
Standing Assumptions For the remainder of this article, we assume that r is a
positive integer, G = Zr as an additive abelian group, and G is a unital group
such that G+ ⊆ (Z+)r . Denote the unit in G by u = (u1, u2, . . . , ur ) ∈ (Z+)r and
the unit interval in G by E . We shall use the notation ≤G for the partial order
on the unital group G and the notation ≤ for the (point-wise) partial order on the
simplicial group Zr .

Even though G = Zr as an abelian group, we have to be careful to dis-
tinguish between the partial orders ≤G and ≤. Because G+ ⊆ (Z+)r , we have
g ≤G h ⇒ g ≤ h for all g, h ∈ G = Zr , but the converse will hold for all g, h iff
G is simplicial.

Suppose z ∈ Zr . Since u is an order unit in G, there exists a positive integer
n such that z ≤G nu. But then z ≤ nu, and it follows that u is an order unit in the
simplicial group Zr . Consequently, the components u1, u2, . . . , ur of u are strictly
positive integers.
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By Theorem 1, the unit interval E in G is finite. By an atom in E , we mean
an element 0 �= a ∈ E such that, for all b ∈ E , 0 < G b ≤G a ⇒ b = a. Because
E is finite, it is atomic, i.e., if 0 �= e ∈ E , there exists at least one atom a ∈ E with
a ≤G e.

Definition 2. Denote by a1, a2, . . . , an the distinct atoms in E . Let A0 = [ai j ] be
the n × r matrix with the vectors a1, a2, . . . , an as its successive rows, and let A
be the (n + 1) × r matrix obtained from A0 by appending the vector u as a final
row. A0 is called the atom matrix and A is called the representation matrix for
E . Let c1, c2, . . . , cr be the successive column vectors of A, define CA to be the
column space of A over R, and let C+

A be the set of column vectors c ∈ CA such
that all components of c are nonnegative real numbers.

The structure of the semisimplicial unital group G is encoded in the rep-
resentation matrix A. Indeed, the last row of A is the unit u and the cone G+

is the set of all linear combinations with coefficients in Z+ of the remaining
rows. Obviously, the column space CA of A forms a directed archimedean lin-
ear space with positive cone C+

A . We are going to show that CA can be orga-
nized into a base-normed Banach space that is isomorphic as a base-normed space
to V (G).

Definition 3. Let e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , er = (0, 0, . . . , 1) be
the standard (Kronecker) free basis vectors for the free abelian group Zr . For
i = 1, 2, . . . , r , define πi : G → Z by πi (z) := zi for z = (z1, z2, . . . , zr ) ∈ G =
Zr . Define the linear transformation α: V (G) → CA by α(ν) := ∑r

j=1 ν(ej)cj for
ν ∈ V (G). Define the linear functional ε: CA → R by ε(c) := (n + 1)st compo-
nent of the column vector c ∈ CA.

We recall that, since E is finite, V (G) = hom(G, R). Evidently πi ∈
hom(G, R) = V (G) for i = 1, 2, . . . , r , {π1, π2, . . . , πr } is a vector-space basis
for V (G), and πi (ej) = δi j (Kronecker delta) for i, j = 1, 2, . . . , r .

Theorem 2.

(i) {a1, a2, . . . , an} is a finite set of generators for the cone G+ and for the
abelian group G.

(ii) The column vectors c1, c2, . . . , cr of A form a vector-space basis for the
column space CA, hence dim(CA) = r .

(iii) α: V (G) → CA is a linear isomorphism of V (G) onto CA such that, for
ν ∈ V (G), the i th component of the column vector α(ν) is ν(ai) for i =
1, 2, . . . , n, and ε(α(ν)) = ν(u). Also, α−1(ci) = πi for i = 1, 2, . . . , r .

(iv) CA is an archimedean base-normed Banach space over R with cone base
C+

A ∩ ε−1(1) and α: V (G) → CA is an isomorphism of base-normed
spaces from V (G) onto CA.
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Proof:

Part (i) follows directly from (Foulis, 2003, Lemma 5.1).
(ii) By (i), each vector ei ∈ G is a linear combination with integer coeffi-

cients of a1, a2, . . . , an, and it follows that each vector in Rr is a linear
combination over R of the rows of the matrix A. Thus, the row space over
the field R of A is Rr , so rank(A) = r , and it follows that the r column
vectors c1, c2, . . . , cr are linearly independent over R. By definition,
the column vectors of A span CA, so they form a vector-space basis
for CA.

(iii) By Definition 3, the i th component of the column vector α(ν) is∑r
j=1 ν(ej)ai j = ν(

∑r
j=1 ai j ej) = ν(ai). By the same calculation, the

(n + 1)st component of α(ν) is ε(α(ν)) = ν(u). We have α(πi ) = ∑r
j=1

πi (ej)cj = ∑r
j=1 δi j cj = ci for i = 1, 2, . . . , r . Sinceπi , i = 1, 2, . . . , r ,

is a vector-space basis for V (G), it follows that α is a linear isomorphism
of V (G) onto CA.

(iv) Let ν ∈ V (G). Then ν ∈ V (G)+ iff 0 ≤ ν(ai) for i = 1, 2, . . . , n. There-
fore, since u ∈ G+, (iii) implies that ν ∈ V (G)+ iff α(ν) ∈ C+

A . Also,ν ∈
�(G) iff ν ∈ V (G)+ with ν(u) = 1 iff α(ν) ∈ C+

A with ε(α(ν)) = 1.
Thus, for the linear isomorphism α: V (G) → CA, we have α(V (G)+) =
C+

A and α(�(G)) = C+
A ∩ ε−1(1), whence CA can be organized into a

base-normed space with cone base C+
A ∩ ε−1(1), and α becomes an iso-

morphism of base-normed spaces.

By Theorem 2 (i), there is at least one vector t = (t1, t2, . . . , tn) ∈ (Z+)n such
that u = ∑n

i=1 ti ai. Such a vector is called a multiplicity vector for the effect algebra
E , and there are only finitely many such vectors (Foulis, 2003, Definition 5.1 and
ff.). The structure of the effect algebra E is encoded in the set of multiplicity
vectors t for E (Foulis, 2003, Theorem 2.7). �

Definition 4. Let t1, t2, . . . , tm be the distinct multiplicity vectors for E and let
T = [ti j ] be the m × n matrix having these vectors as its successive rows. Define M
to be the m × (n + 1) matrix obtained by appending a final column to T consisting
entirely of −1’s. We call T the multiplicity matrix and M the relation matrix for
E . Define KM to be the real vector space consisting of all (n + 1)-dimensional
column vectors c such that Mc = 0.

Lemma 2.

(i) CA is a linear subspace of KM .
(ii) r = dim(CA) ≤ dim(KM ) = n + 1 − rank(M).

(iii) rank(M) = rank(T ).
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Proof:

(i) Since
∑n

i=1 ti j aj − u = 0 for i = 1, 2, . . . , m, it follows that ci ∈ KM

for i = 1, 2, . . . , r , whence CA ⊆ KM .
(ii) By Theorem 2 (ii), r = dim(CA), and by (i), dim(CA) ≤ dim(KM ). The

vector space KM can be regarded as the null space of the linear transfor-
mation c �→ Mc, whence by the rank-plus-nullity theorem dim(KM ) =
n + 1 − rank(M).

(iii) Part (iii) follows from (Foulis, 2003, Theorem 2.6 (i)). �

Theorem 3. The following conditions are mutually equivalent:

(i) G is R-unital.
(ii) G is Z-unital.

(iii) G is F-unital for every free abelian group F.
(iv) G is G-unital.
(v) n + 1 ≤ rank(T ) + r .

(vi) CA = KM .

Proof: The equivalence of (i), (ii), and (v) follows from (Foulis, 2003,
Theorem 5.2) and the fact that rank(M) = rank(T ). If G is Z-unital and D is
a direct product of copies of Z, it is clear that G is D-unital. Also, if G is K -unital
and K1 is a subgroup of K , then G is K1-unital. As every free abelian group is a
subgroup of a direct product of copies of Z, it follows that (ii) ⇒ (iii). As G itself is
a free abelian group, we have (iii) ⇒ (iv). As Z is isomorphic to a subgroup of G,
it follows that (iv) ⇒ (ii), whence (i)–(v) are mutually equivalent. The equivalence
of (v) and (vi) follows from Lemma 2 (ii), (iii). �

Example 4. Here is an example in which all of the equivalent conditions in
Theorem 3 fail. Let G be the simplicial group in Example 3 and organize G into a
unital group with unit u := 5. Then the unit interval is E = {0, 2, 3, 5}, the atoms
in E are a1 := 2, a2 = 3, and there is only one multiplicity vector, namely t :=
(1, 1). Here n = 2, r = 1, rank(T ) = 1, and the condition n + 1 ≤ rank(T ) + r in
Theorem 3 fails.

In Example 4, G is not archimedean. The authors do not know an example
of an archimedean semisimplicial unital group that fails to be Z-unital.

6. THE LINEAR SPACES V AND U

We maintain the assumptions and notation of Section 5. Our purpose in this
section is to obtain yet another representation for the base-normed space V (G) as
the Banach dual space V of an r -dimensional order-unit space U that contains G
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as an additive subgroup. Using this representation, we formulate new necessary
and sufficient conditions for G to be archimedean (Theorem 6 and Corollary 3
below).

The group G = Zr is an additive subgroup of the r -dimensional coordinate
vector space Rr over R. In what follows, we understand that Rr is organized into
a directed linear space with the standard positive cone (R+)r and coordinate-wise
partial order ≤, and also that it is organized into a euclidean space with the usual
dot product a · b as the inner product.

We have a1, a2, . . . , an, u ∈ E ⊆ G+ ⊆ (Z+)r ⊆ (R+)r . The free basis e1,
e2, . . . , er for the abelian group G is an orthonormal basis for the euclidean space
Rr , and by Theorem 2 (i), each ei, i = 1, 2, . . . , r , is a linear combination with
integer coefficients of the vectors aj. Therefore, the atoms a1, a2, . . . , an in E span
the euclidean space Rr .

We shall be organizing Rr into a directed linear space in three ways with three
different partial orders, one of which is the standard coordinate-wise partial order.
In this regard, if P is a real linear space, then we call a subset C ⊆ P a linear cone
in P iff 0 ∈ C , C is closed under addition, C is closed under multiplication by
nonnegative real numbers, and p, −p ∈ C ⇒ p = 0. If C is a linear cone in P , then
there is one and only one way to organize P into a partially ordered linear space with
C as its positive cone—namely by defining the partial order p ≤C q iff q − p ∈ C .

Definition 5.

(i) V + := {v ∈ Rr | 0 ≤ v · ai for i = 1, 2, . . . , n}.
(ii) V� := {w ∈ V + | w · u = 1}.

(iii) U+ := { ∑n
j=1 y j aj | y j ∈ R+ for j = 1, 2, . . . , n

}
.

Lemma 3.

(i) u ∈ E ⊆ G+ ⊆ U+ ⊆ (R+)r ⊆ V +.
(ii) Both V + and U+ are linear cones in Rr .

(iii) y ∈ Rr ⇒ mu − y ∈ U+ for some positive integer m.
(iv) Rr = V + − V + = U+ − U+.
(v) If v ∈ V + and e ∈ E, then 0 ≤ v · e ≤ v · u.

(vi) V� is a polytope in Rr and it is a cone base for V +.
(vii) U+ = {y ∈ Rr | 0 ≤ y · v, ∀v ∈ V +}.

(viii) V + = {v ∈ Rr | 0 ≤ v · y, ∀y ∈ U+}.

Proof:

(i) Part (i) is obvious.
(ii) Clearly, both V + and U+ are closed under addition and under multipli-

cation by nonnegative scalars, and 0 belongs to both. If v ∈ −V + ∩ V +,
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then v · ai = 0 for i = 1, 2, . . . , n, so, since the vectors ai span Rr , we
have v = 0. Thus V + is a linear cone in Rr . Because U+ ⊆ (R+)r , we
have −U+ ∩ U+ ⊆ {0}, so U+ is also a linear cone in Rr .

(iii) Let y ∈ Rr . Then there are real numbers y j ∈ R such that y = ∑n
j=1 y j

aj. Choose a positive integer k such that y j < k for j = 1, 2, . . . , n.
As u − aj ∈ G+ ⊆ U+, we have ku − kaj = k(u − aj) ∈ U+ for j =
1, 2, . . . , n. Also, as aj ∈ G+ ⊆ U+ and k − y j ∈ R+, we have kaj −
y j aj = (k − y j )aj ∈ U+, whence ku − y j aj ∈ U+ for j = 1, 2, . . . , n.
Consequently, with m := nk we have mu − y = ∑n

j=1(ku − y j aj) ∈
U+.

(iv) Since (R+)r ⊆ V + and Rr = (R+)r − (R+)r , it follows that Rr = V +

− V +. If y ∈ Rr , then by (iii), there is a positive integer m such that
y = mu − (mu − y) ∈ U+ − U+, so Rr = U+ − U+.

(v) Let v ∈ V + and e ∈ E . Then e is a linear combination of ai, i =
1, 2, . . . , n, with nonnegative integer coefficients, and it follows that
0 ≤ v · a. But we also have u − e ∈ E , so 0 ≤ v · (u − e), whence
0 ≤ v · e ≤ v · u.

(vi) As V� is an intersection of finitely many closed halfspaces {w | 0 ≤
w · ai}, i = 1, 2, . . . , n, {w | 1 ≤ w · u}, and {w | 1 ≥ w · u} of Rr , it
is a polyhedron. If w ∈ V�, then 0 ≤ w · ai ≤ w · u = 1 for all i =
1, 2, . . . , n, so the fact that the vectors ai span Rr implies that V� is a
bounded subset of the Euclidean space Rr . Therefore, V� is a bounded
polyhedron, i.e., a polytope in Rr . Suppose v ∈ V +. Then if v · u =
0, we have 0 ≤ v · ai ≤ v · u = 0 for i = 1, 2, . . . , n, and, since the
vectors ai span Rr , it follows that v = 0. Therefore, if v �= 0, then t :=
v · u �= 0, w := (1/t)v ∈ V� and v = tw. Conversely, if t ′ is a positive
real number, w′ ∈ V�, and v = t ′w′, then t = v · u = t ′w′ · u = t ′ and
w = (1/t)v = w′. Therefore, V� is a cone base for V +.

(vii) Part (vii) is a direct consequence of Farkas’s lemma (Dax, 1997).
(viii) Part (viii) is obvious. �

Definition 6. Let V := Rr and U := Rr as real linear spaces, but organized into
directed linear spaces with positive cones V + and U+, respectively. Denote the dual
spaces of V and U by V ∗ and U ∗, respectively. Organize V ∗ and U ∗ into partially
ordered linear spaces with the positive cones V ∗+ := { f ∈ V ∗ | 0 ≤ f (v), ∀v ∈
V +} and U ∗+ := {φ ∈ U ∗ | 0 ≤ φ(y), ∀y ∈ U+}, respectively. If v ∈ V , define
v� ∈ U ∗ by v�(y) := v · y for all y ∈ U . If y ∈ U , define y� ∈ V ∗ by y�(v) := y · v
for all v ∈ V .

As well as being directed linear spaces, both V = Rr and U = Rr are
r -dimensional euclidean spaces, and it follows that v �→ v� is a linear isomor-
phism of V onto U ∗ and y �→ y� is a linear isomorphism of U onto V ∗.
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Theorem 4. V is a base-normed Banach space with V� as cone base and U
is an order-unit Banach space with u as order unit. Therefore, V ∗ is an order-
unit Banach space with order unit e1 ∈ V ∗+ uniquely determined by the condition
e1(w) = 1 for all w ∈ V�, and U ∗ is a base-normed Banach space with cone
base � := {φ ∈ U ∗+ | φ(u) = 1}. Under the mapping v �→ v�, V is isomorphic
as a base-normed Banach space to U ∗, and under the mapping y �→ y�, U is
isomorphic as an order-unit Banach space to V ∗.

Proof: By Lemma 3 (vi), the cone base V� is compact in the Euclidean space
Rr , so V is a base-normed space (Alfsen, 1971, Proposition II.1.12). Since V is
finite dimensional, the base-norm topology coincides with the Euclidean topology
and V is a Banach space under the base norm. By Ellis’s theorem (Alfsen, 1971,
Theorem II.1.15), the Banach dual space V ∗ of V is an order unit space with
positive cone V ∗+ and with order unit e1. By Lemma 3 (vii), U+ = {y ∈ U |
y�(v) ≥ 0, ∀v ∈ V +}, whence {y� | y ∈ U+} = V ∗+. By Lemma 3 (i) and (iii),
u ∈ U+ and u is an order unit in U . Also, u�(w) = u · w = 1 for all w ∈ V�,
whence u� = e1. Consequently, U is an order-unit Banach space with order unit u
and as such it is isomorphic to V ∗ under y �→ y�.

By Ellis’s theorem again, the Banach dual space U ∗ of U is a base-normed
space with positive cone U ∗+ and with cone base �. By Lemma 3 (viii), V + = {v ∈
V | v�(y) ≥ 0, ∀y ∈ U+}, whence {v� | v ∈ V +} = U ∗+. Also, it is clear that v ∈
V� ⇔ v� ∈ U ∗+ with v�(u) = 1 ⇔ v� ∈ �, so V is isomorphic as a base-normed
Banach space to U ∗ under v �→ v�. �

The unital group G is an additive subgroup of the order-unit Banach space
U in such a way that the unit u of G is the order unit of U , G+ ⊆ U+, and U
is the linear span of E . By the following theorem, this provides an embedding of
G into an archimedean unigroup U in such a way that V (G) is isomorphic as a
base-normed Banach space to V (U ).

Theorem 5. As a partially ordered abelian group under addition, U is an
archimedean unigroup with unit u and, regarded as such, V (U ) = U ∗. If ν ∈
V (U ) = U ∗, denote by ν|G the restriction of ν to G ⊆ U. Then ν �→ ν|G is a
base-normed-space isomorphism from V (U ) onto V (G).

Proof: We regard U simply as an additive abelian group as in Example 2. By
(Cook and Foulis (2004), Lemma 3.4), U is a unigroup with unit u and hom(U, R)+

is the set of all ν ∈ U ∗ such that ν(U+) ⊆ R+. Therefore, V (U )+ = U ∗+, so
V (U ) = V (U )+ − V (U )+ = U ∗+ − U ∗+. By Theorem 4, U ∗ is directed, hence
V (U ) = U ∗. Since U is archimedean as a directed linear space, it is clear that it is
archimedean as a unital group.
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If ν ∈ V (U ) = U ∗, then we have ν|G ∈ hom(G, R), and since E is finite,
hom(G, R) = V (G) (Cook and Foulis (2004), Lemma 5.2 (ii)). Obviously, ν �→
ν|G is a linear transformation from V (U ) into V (G) and, since U is the linear
span of G, ν �→ ν|G is injective. As G is a free abelian group of rank r , the
dimension of hom(G, R) = V (G) is r . Also, the dimension of V (U ) = U ∗ is r , so
ν �→ ν|G is a linear isomorphism of V (U ) onto V (G). That this isomorphism maps
V (U )+ = U ∗+ onto V (G)+ and the cone base � in U ∗+ onto �(G) is clear. �

Corollary 2. G+ ⊆ G ∩ U+ = {p ∈ G | 0 ≤ ω(p), ∀ω ∈ �(G)}.

Proof: By Theorem 5, if p ∈ G, then 0 ≤ ω(p) for every ω ∈ �(G) iff 0 ≤ σ (p)
for every σ ∈ �(U ). But U is archimedean, so 0 ≤ ω(p) for every ω ∈ �(G) iff
p ∈ U+. �

Theorem 6. The following conditions are mutually equivalent:

(i) G is archimedean.
(ii) G is unperforated.

(iii) For every vector (q1, q2, . . . , qn) ∈ (Q+)n such that
∑n

i=1 qi ai ∈ Zr ,
there exists a vector (p1, p2, . . . , pn) ∈ (Z+)n such that

∑n
i=1 qi ai =∑n

i=1 pi ai.
(iv) G+ = G ∩ U+.
(v) There exist bj ∈ Zr for j = 1, 2, . . . , s such that, for all p ∈ Zr , p ∈

G+ ⇔ bj · p ≥ 0 for j = 1, 2, . . . , s.

Proof:

(i) ⇒ (ii) by (Goodearl, 1986, Proposition 1.24).
(ii) ⇒ (iii). Assume that G is unperforated, and suppose q1, q2, . . . , qn ∈

Q+ such that p := ∑n
i=1 qi ai ∈ Zr = G. There is a positive integer

M such that ki := Mqi ∈ Z+ for i = 1, 2, . . . , n, and we have Mp =∑n
i=1 ki ai ∈ G+. Since G is unperforated, it follows that p ∈ G+, hence

there exist p1, p2, . . . , pn ∈ Z+ such that
∑n

i=1 qi ai = p = ∑n
i=1

pi ai.
(iii) ⇒ (iv). Assume (iii) and let p ∈ G ∩ U+. Since p ∈ U+, there exist

yi ∈ R+ for i = 1, 2, . . . , n such that p = ∑n
i=1 yi ai. Since the compo-

nents of p as well as those of ai, i = 1, 2, . . . , n, are integers, it follows
that there exist qi ∈ Q+ for i = 1, 2, . . . , n such that p = ∑n

i=1 qi ai.
Hence, by (iii), there exist pi ∈ Z+ for i = 1, 2, . . . , n such that p =∑n

i=1 pi ai ∈ G+. Thus, G ∩ U+ ⊆ G+, and the opposite inclusion is
obvious.

(iv) ⇒ (i). If (iv) holds, then by Corollary 2, G+ = {g ∈ G | ω(g) ≥ 0, ∀ω

∈ �(G)}, whence G is archimedean by (Goodearl, 1986, Theorem 4.14).
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(i) ⇔ (v). The equivalence of (i) and (v) is a direct consequence of (Foulis,
2003, Theorem 5.1). �

Corollary 3. A directed abelian group with a finitely generated positive cone is
archimedean iff it is unperforated.

Proof: If a directed abelian group is archimedean, then it is unperforated
(Goodearl, 1986, Proposition 1.24). Conversely, suppose that H is a directed un-
perforated abelian group with a finitely generated positive cone. Without loss of
generality, we can assume that H �= {0}. Since H is unperforated, it is torsion free.
By (Foulis, 2003, Theorem 2.1), H has a generative order unit u and H+[0, u] is
finite. Thus by Theorem 1, there is a unital isomorphism from H onto a group G
satisfying our standing assumptions. Since H is unperforated, so is G, whence G
is archimedean by Theorem 6, and it follows that H is archimedean. �

As is shown by Example 1, if the hypothesis that the directed abelian group
G in Corollary 3 has a finitely generated positive cone is dropped, the conclusion
of the corollary may fail even if G is a free group with finite rank and G+ satisfies
the descending chain condition.
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